
Embedding Graphs in the Cubic Lattice and

Another Construction of a Universal Turing Machine

Min Hyuk “Daniel” Jang

December 18, 2025

Contents

1 Introduction 1

2 Prerequisites 1
2.1 Turing Machines . 1

2.1.1 Multi-tape Turing Machines . 3
2.1.2 Multidimensional Turing Machines 3
2.1.3 Universal Turing Machines . 3

2.2 Embedding Graphs . 4

3 EmbeddingGraphs in the Cubic Lattice Z3 4

4 TheConstruction 5

5 Conclusion 7

1 Introduction

TheTuringmachine, invented by Alan Turing in 1936, was crucial in igniting the field of the-
oretical computer science. Perhaps the most important reason for this was because certain
Turing machines can simulate all Turing machines. We call such Turing machines univer-
sal Turing machines. Universal Turing machines were the crux of Turing’s 1936 proof that
there was no answer to David Hilbert and William Ackermann’s Entscheidungsproblem.

There are many ways one may construct a universal Turing machine. This thesis pro-
poses another one, primarily based on the natural way a reader of a text about Turing ma-
chines may reason about them.

2 Prerequisites

We begin with some prerequisites. Much of the following exposition is based on [1].

1

2.1 TuringMachines

Turing machines are mathematically a jumble of components.

Definition 1 (Turing machines). A Turing machine M := (q0, Q,H,Σ,#,Γ, δ) is a 7-tuple
where, withQ′ := Q−H ,

q0 ∈ Q ⊇ H

and Σ t {#} ⊆ Γ

and δ : Q′ × Γ → Q× Γ× {L,S,R}.

Given an input w := w1w2 . . . ∈ Σ∗, a Turing machine will run, and then perhaps halt.
(Note that a Turing machine may not halt, in which case it keeps running.) While running,
a Turing machine will be in exactly one state at any given time; Q is the set of such states.
q0 is the starting state.

A Turing machine has a tape. The tape is (countably-)infinitely long and has boxes in
which symbols from Γ can be written. Initially, the infinitely long tape is filled from the left
with (countably-)infinitely many #s, then the contents of the input w := w1w2 . . . ∈ Σ∗ (
Γ, and the another (countably-)infinitely long sequence of #s.

A Turing machine also has a head. The head is a pointer which points to a certain box
on the tape (which will contain a symbol from Γ). Initially, the head points to the box of
the tape containing the first symbol w1 of the input w := w1w2

Another way of conceptualizing the tape and head is by a function t : Z → Γ and an
integer h ∈ Z. Initially, given input w := w1w2 . . . ∈ Σ∗,

t : Z → Γ

{. . . ,−1, 0} → {#}
∀i ∈ {1, . . . , |w|}, i 7→ wi

{|w|+ 1, |w|+ 2, . . .} → {#}

and h := 0 such that t(h) = w1.
A Turing machine may

1. Change states,

2. Change the symbol t(h) in the box at the current head position h, and

3. Move its head left (L) or right (R) or not (S)

as it runs, depending on

1. The current state, and

2. The symbol in the box at the current head position.

2

We call such changes transitions. The transition function δ : Q′ × Γ → Q × Γ × {L,S,R} is
the description of all possible transitions.

We can represent δ as a directed, edge-labeled (or edge-“colored”) graphGδ := (V, {Eγ1,γ2,m}γ1,γ2,m)1

where

V := Q

Eγ1,γ2,m := {(p, q) ∈ V 2 | δ(p, γ1) = (q, γ2,m)}.

The edges here are labelled (or “colored”) with the necessary information to edit the tape
and move the head, while the edge itself describes the change of state.

H ⊆ Q is the set of halting states. A Turing machine halts if (and only if) it transitions
into some halting state ∈ H . We may as well call Q′ := Q−H the set of “running states.”

The output of a Turing machine is the finite string of symbols of the tape after it has
halted, stripped of the (countably-)infinite string of #s on either side. Note that by def-
inition, there is no output if the Turing machine doesn’t halt. The fact that the Turing
machine indeed halted implies that its output will be finitely long.

2.1.1 Multi-tape TuringMachines

A Turing machine may have multiple tapes and multiple accompanying heads. Each head
can move separately along its respective tape.

Definition2 (Multi-tapeTuringmachines). Ann-tapeTuringmachineM := (q0, Q,H,Σ,#,Γ, δ)
is a 7-tuple where, withQ′ := Q−H ,

q0 ∈ Q ⊇ H

and Σ t {#} ⊆ Γ

and δ : Q′ × Γn → Q× Γn × {L,S,R}n.

Surprisingly (or not), all multi-tape Turing machines can be simulated by some single-
tape Turing machine. This can be achieved by stacking all the tapes together (so that they
become one “thick” tape) and writing the head positions of each tape on the tape itself.

Fact 1. ∀n ∈ N, ∀ n-tape Turing machinesM , ∃ a 1-tape Turing machineM ′ which can simulate
M .

2.1.2 Multidimensional TuringMachines

A Turing machine can have a multidimensional2 tape. For instance, the tape could instead
be a two-dimensional sheet.

1m stands for “movement.”
2Unlike “multi-tape,” I chose to not hyphenate “multidimensional,” as it is a more common word compared

to “multi-tape.”

3

Definition 3 (Multidimensional Turing machines). A d-dimensional Turing machine M :=
(q0, Q,H,Σ,#,Γ, δ) is a 7-tuple where, withQ′ := Q−H ,

q0 ∈ Q ⊇ H

and Σ t {#} ⊆ Γ

and δ : Q′ × Γ → Q× Γ× {L1, L2, . . . , Ld,S,R1,R2, . . . ,Rd}.

Again, surprisingly (or not), all multidimensional Turing machines can be simulated by
some one-dimensional Turingmachine. This is possible because the boxes of a d-dimensional
“tape” (or “sheet” or …) can still be counted; it is only a matter of enumerating the boxes in a
convenientway and translating each d-dimensionalmovementm ∈ {L1, L2, . . . , Ld,S,R1,R2, . . . ,Rd}
to some one-dimensional movement accordingly.

Fact 2. ∀d ∈ N, ∀ d-dimensional Turing machines M , ∃ a one-dimensional Turing machine M ′

which can simulateM .

2.1.3 Universal TuringMachines

Certain Turing machines can simulate all other Turing machines (including themselves).
We call these universal Turing machines or UTMs. Specifically, given as input an encoding
〈M〉 of some Turing machine M := (q0, Q,H,Σ,#,Γ, δ) and an encoding 〈w〉 of an input
string w ∈ Σ∗, a UTM will output the output ofM run with input w.

The Classical Construction The classical construction of a UTM is based on a three-
tape Turing machine. Fact 1 guarantees that we can convert this into a one-tape Turing
machine; we opt for a three-tape Turing machine merely for ease of exposition. Let us call
this UTMMu.

The first tape of Mu contains the encoding 〈M〉 of M := (q0, Q,H,Σ,#,Γ, δ). The
second tape is where we will simulate the tape ofM ; hence it initially contains the encoding
of w, 〈w〉. The third tape keeps track of the simulated state of M ; it initially contains the
encoding of state q0 ∈ Q.

With this set up, the simulation of a single transition is straightforward:

1. We read the entirety of the third tape to obtain the current state q ∈ Q;

2. We read the symbol under the head of the second tape γ ∈ Γ;

3. We search the first tape (which contains the encoding of M which contains the en-
coding of δ) for δ(q, γ);

(a) If it exists, let (q′, γ′,m) := δ(q, γ); we update the third tape to store our new
state q′ ∈ Q, replace the symbol γ under the head of the second tape with γ′,
and finally move the head of the second tape according tom ∈ {L,S,R};

(b) Otherwise, this is a halting state; we halt.

By simulating transitions, we can simulate the running ofM on input w.

4

2.2 EmbeddingGraphs

By an embedding of a graph we mean a particular placement of vertices and drawing of edges
such that neighboring edges only meet at their endpoints and nowhere else. A graph can be
embedded in or is embeddable in some topological space iff there exists an embedding of it in
that (topological) space.

Fact 3. Any graph can be embedded in the three-dimensional topological spaceR3.

3 EmbeddingGraphs in the Cubic Lattice Z3

A natural generalization of Fact 3 one might consider is the following lemma:

Lemma 1. Any directed graph G := (V,E) can be embedded in the cubic lattice Z3; that is, we
can draw G such that each vertex coincides with some lattice point (x, y, z) ∈ Z3 and each edge is
a concatenation of steps from S := {(±1, 0, 0), (0,±1, 0), (0, 0,±1)}. Moreover, this embedding
requires no more than |E|2(|V |+ |E|) orO(|E|2(|V |+ |E|)) ⊆ O(|V |6) lattice points.

Proof. Refer to Figures 1 and 2.
WLOG, let V := [|V |]. Stack the vertices along the z-axis, with smaller vertices higher

up. Ensure the distance between vertex v and v+1 is at least deg+(v)+ 1, so that there are
at least deg+(v) lattice points in between vertex v and v + 1, so that each edge originating
from v can leave the z-axis on its own z-level. Let ze be this z-level for each e ∈ E.

Draw the rest of each edge to its destination vertex. First, each edge e must reach its
“orbit”—that is, the Manhattan-distance circle about (0, 0, ze). There will be a total of |E|
orbits. At some point, the edge can float or sink to the z-level of its destination vertex, and
then exit its orbit. Note that edges with the same destination collide only as they exit their
respective orbits.

This completes the embedding. Our tower of vertices along the z-axis can be as short
as |V | + |E|, although in Figure 1 it is (2|V | + |E|)-tall due to the extra lattice points we
add after each “vertex block.” The orbits can be confined to the first xy-quadrant, although
in Figures 1 and 2 we use two xy-quadrants for ease of illustration. Hence, this embedding
requires no more than |E|2(|V |+ |E|) lattice points.

Even if we space our vertices with s lattice points and use all four xy-quadrants, we need
no more than (2|E|)2((1 + s)|V |+ |E|) ∈ O(|E|2(|V |+ |E|)) ⊆ O(|V |6) lattice points.

4 TheConstruction

With this, we may now consider our alternative construction of a universal Turing machine.
Themain idea is to replace the first and third tapes of the classical construction with a single
three-dimensional tape. The resulting two-tape Turing machine has one three-dimensional
tape (the first tape) and one one-dimensional tape (the second tape). Let us call this UTM
M ′

u.

5

Figure 1: A perspective-projection view of our embedding.

Figure 2: A top-down view of our embedding.

6

Given M := (q0, Q,H,Σ,#,Γ, δ), a Turing machine, and an input w ∈ Σ∗, we em-
bed the graph representation Gδ of δ in the cubic lattice Z3 of the three-dimensional tape.
Lemma 1 guarantees that this is possible in polynomial-in-|〈M〉| space. One way of doing
this can be based on Figure 1: each “vertex block” corresponds to some state q ∈ Q; each
point in the block is labelled with an element from Γ. This designates a separate z-level and
orbit for each transition (q′, γ′,m) := δ(q, γ) that exists. We connect the vertex blocks with
directed edges as in the proof of Lemma 1. We insert information about γ′ and m at some
point in the edge, before it merges with other edges. Halting states will have no outgoing
edges. Note that a three-dimensional tape is isomorphic to a cubic lattice; we simply replace
each lattice point with a box containing a symbol. The one-dimensional tape is identical to
the second tape of the classical construction (it contains the simulated tape ofM ; hence it
initially contains 〈w〉).

Again, with this set up, the simulation of a single transition is straightforward:

1. The head of the three-dimensional tape is currently at the upmost box of the “state
block” corresponding to q ∈ Q.

2. We read the symbol under the head of the second tape γ ∈ Γ;

3. The head of the three-dimensional tape scans the state block from top to bottom to
see whether the transition δ(q, γ) exists;

(a) If it exists, the head of the three-dimensional tape follows the sequence of boxes
containing step symbols which direct the head to the next state block q′. Along
the way, there will be information about γ′ andm, encoded in special step sym-
bols such that δ(q, γ) = (q′, γ′,m); we replace the symbol γ under the head of
the one-dimensional tape with γ′ and move its head according tom ∈ {L,S,R};

(b) Otherwise, this is a halting state; we halt.

We remark that this is a common way someone studying Turing machines would reason
about one. We simulate the Turing machine, with the aid of a transition diagram drawn on
paper, with the simulated Turing machine’s tape in our head.

Note that the simulated Turing machine need not be a one-dimensional Turing ma-
chine. Thanks to the transition diagram being directly represented in one of the tapes, the
encoding and subsequent simulation of multidimensional Turing machines is more straight-
forward. This is the primary advantage of this construction.

5 Conclusion

In this thesis, I proposed an alternate construction of a universal Turing machine, inspired
by the way someone studying Turing machines may reason about them. This construction
has the benefit that it makes the simulation of multidimensional Turing machines simpler.
A proof that any directed graph can be embedded in the cubic latticeZ3 in polynomial space
accompanies the construction.

7

References

[1] 박근수.『오토마타이론』. Unpublished lecture notes. Sept. 2023.

8

